

    
      
          
            
  
Neural Architecture Search for NNabla

NNablaNAS is a Python package that provides methods in neural architecture search for NNabla


	A top-level graph to define candidate architectures for convolutional neural networks (CNNs)


	Profilers to measure the hardware demands of neural architectures (latency, number of parameters, etc…)


	Searcher algorithms to learn the architecture and model parameters (e.g., DartsSearcher and ProxylessNasSearcher)


	Regularizers (e.g., LatencyEstimator and MemoryEstimator) which can be used to enforce hardware constraints




In this document, we will describe how to use the Python APIs, some examples, and the contribution guideline for developers. The latest release version can be installed from  here [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas].
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Introduction

The success of Deep Neural Networks (DNNs) is due to their ability to automate the feature engineering process. This success has been shown in many tasks, including s image recognition, speech recognition, and machine translation.  The choice of network architecture is a particularly important step when we design DNN based machine learning algorithms. A network architecture is a description of which layers are used in a DNN, how each layer is parametrized and how the layers are connected. Commonly known classes of network architectures are for example feed-forward DNNs, recursive DNNs, ResNets, Inception networks or MobileNets.

By improving the DNN architecture such that it is tailored specifically to one given task,  we can further increase the performance of deep learning models [Elsken2018]. However, most of the neural architectures are designed manually. This is time-consuming, expensive and does not scale with an increasing number of new domains and learning tasks. A promising direction in automating machine learning is automating architecture engineering, the so-called neural network architecture search (NAS). Neural network architecture search is closely related to hyperparameter optimization [https://en.wikipedia.org/wiki/Hyperparameter_optimization] and is a subfield of automated machine learning [https://en.wikipedia.org/wiki/Automated_machine_learning] (AutoML). NNablaNAS is a framework for architecture search in computer vision domain. The main aim is to provide a modular, easy, and extendible toolbox for deep learning practitioners. In this section, an overview of the neural architecture search is introduced.





What is neural architecture search?

Neural Architecture Search is a technique in machine learning used to automatically learn neural network architectures for a given machine learning task. Let \(\theta\) and \(\alpha\) denote the model and network architecture parameters, NAS can be formulated as a bilevel optimization problem:


\[\begin{split}\underset{\alpha}{\arg\min} &\quad \mathcal{L}_{\text{val}} (\theta^{*}; \alpha) \\
\text{s.t.} & \quad \theta^{*} = \underset{\theta}{\arg\min} \; \mathcal{L}_{\text{train}} (\theta; \alpha)\end{split}\]

where \(\mathcal{L}_{\text{train}}\) and \(\mathcal{L}_{\text{val}}\) denote the training and validation loss function, respectively. The design of modern neural network architectures is driven by two different objectives [liu2018]:


	The neural network should have a reasonably high capacity, i.e., the family of transfer functions contains arbitrary complex functions that can capture lots of information from training data.


	Inference should be computationally efficient, i.e., inference only needs a small number of multiplication-accumulation (MAC) operations or low inference latency.




The design of a good neural architecture corresponds to find a good balance between those (often competing) requirements, by selecting and arranging layers in a meaningful way.

Compared to the early days of Deep Learning, today, DNNs consist of a  broad variety of different network layers like Linear, Convolutional, Dilated Convolutional, Group Convolutional, Separable Convolutional (depth-wise, channel-wise, spatial), Pooling, Skip Connect, Batch Normalization, etc. Therefore, neural architecture design is a very large combinatorial problem which  is especially hard to solve, because we have only a poor (or almost no) understanding how a specific choice or arrangement of layers affects our requirements. The neural architecture search aims to automate architecture design and to directly learn the optimal architecture from the data. This has multiple benefits. We need no expert with lots of experience. We do not need to understand which effect a combination of certain layers yields to our requirements. NAS has the potential to come up with architectures which generalize much better to unseen data than humans because it can try out many more architectures at the same time. We can optimize the architectures to be resource-efficient.

[image: _images/nas_overview.png]
Fig. 1. An overview of neural architecture search. (Image source: [Elsken2018])

The main components of NAS include:


	Search space: This defines which architectures or types of artificial neural networks can be used.


	Search algorithm: This defines approaches used to explore the search space.


	Performance estimation strategy: This evaluates the performance of a given architecture.







NAS Algorithms

NAS is a combinatorial and therefore a computationally complex optimization problem. A variety of different NAS algorithms has been proposed in the past. To name a few, there are:


	Reinforcement learning-based NAS algorithms. The seminal paper about NAS proposed such a reinforcement learning approach.  Reinforcement learning-based algorithms use an actor that generates neural architectures. To this end, the actor follows a policy, which is optimized, such that the validation accuracy of the generated neural architectures is maximized.


	Stochastic NAS algorithms, which randomly generate neural architectures and keep the last best architecture.


	Evolutionary Algorithm (EA) based NAS algorithms. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. The evolution of the population then takes place after the repeated application of reproduction, mutation, recombination, and selection.


	Bayesian Optimization (BO) based algorithms. BO is a powerful optimization method to optimize non-differentiable black-box functions that are complex to evaluate. In the case of NAS, this function is the validation accuracy of a network architecture. It is very complex to evaluate because to calculate it we need to train a DNN until convergence.


	Differentiable NAS algorithms like DARTS, which relax the optimization problem such that it becomes differentiable and can be solved with gradient-based optimization algorithms.


	Proxyless NAS (PNAS), which uses a ping-pong optimization scheme that switches between gradient descent based model parameter updates that minimize the training error and reinforce based architecture parameter updates that minimize the test error, i.e.,


\[\begin{split}\max_{\alpha} &\quad \mathbb{E}_{z \sim p_{\alpha}(z)} \big[\text{score}(z, \Phi^{*})\big] \\
\text{s.t.} & \quad \Phi^{*} = \underset{\Phi}{\arg \min} \quad \text{loss}(z, \Phi)\end{split}\]





NNablaNAS implements DARTS and PNAS algorithms. Both report a good performance on multiple datasets. For a detailed description of the algorithms, we refer to section NAS Algorithms or to the original papers [liu2018] and [Cai2018].




Code structure

The most fundamental source codes are in the nnabla_nas folder [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/tree/master/nnabla_nas]. See below for a high-level overview of the repository.


	contrib [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/-/tree/master/nnabla_nas%2Fcontrib]: Search spaces and neural architectures are defined in this folder.


	dataset [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/-/tree/master/nnabla_nas%2Fdataset]: Datasets related are implemented in this folder. NNablaNAS uses a dataloader to feed data into the model.


	module [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/-/tree/master/nnabla_nas%2Fmodule]: Most basic modules to define search spaces and to construct a neural network.


	optimizer [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/-/tree/master/nnabla_nas%2Foptimizer]: Simple optimizers to update the parameters of the neural networks as well as architecture parameters.


	runner [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/-/tree/master/nnabla_nas%2Frunner]: Search and retraining algorithms are defined in this folder. Any new architecture search algorithm should follow the same API.


	utils [https://gitlab.stc.eu.sony.com/bacnguyencong/nnabla_nas/-/tree/master/nnabla_nas%2Futils]: Utilities functions related to logging, visualization, and profiling.




[image: _images/high_level_API.png]
Fig. 2. A high-level API of the NNablaNAS framework.
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Installation

Run the following code snippet for a local installation:

git clone git@gitlab.stc.eu.sony.com:bacnguyencong/nnabla_nas.git
cd nnabla_nas
pip install -r requirements.txt





To build documentation in various formats, you will need Sphinx [http://www.sphinx-doc.org] and the readthedocs theme.

cd docs/
pip install -r requirements.txt





You can then build the documentation by running make <format> from the docs/ folder. Run make to get a list of all available output formats.
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NAS Algorithms

While multiple different NAS algorithms have been proposed in the past, NNablaNAS implements only two of them, namely DARTS and ProxylessNAS. In the past, DARTS has shown impressive results on CIFAR10. Furthermore,  the algorithm is very simple. However, DARTS also has some drawbacks. It requires a lot of memory and has a very high computational complexity. As described later in detail, DARTS instantiates a superposition of all possible networks in the search space. Because the computational complexity to evaluate a superposition of all networks within the search space can be very high, DARTS cannot be used to search for architectures in large search spaces or on large datasets like Imagenet. ProxylessNAS addresses this problem and instantiates only a few candidate networks from the search space at once. This greatly improves memory efficiency. However, it comes at the cost of slower convergence of the algorithm.

Consider the simple example search space in the following Fig. 1. The input of the search space is \(x\). The input is passed to \(K\) candidate functions \(f_k(x, \theta_k)\) with model parameters \(\theta_k\). The output of each candidate function is weighted with a binary architecture weight \(z_k \in \{0,1\}\). Here, \(\sum_{k=1}^K z_k =1\), i.e., only one candidate function can be selected at a time. The result then is accumulated to calculate the output


\[y = \sum_{k=1}^K z_k f_k(x; \theta_k)\]

[image: ../_images/pnas_example.png]
Fig. 1. A simple example search space.

NAS tries to optimize the architecture weights \(z_1, z_2, ..., z_K\), such that the test accuracy of the network is maximized. This results in the well-known bi-level optimization problem


\[\begin{split}\underset{z}{\arg\min} &\quad \mathcal{L}_{\text{val}} (\theta^{*}; z) \\
\text{s.t.} & \quad \theta^{*}|z = \underset{\theta}{\arg\min} \; \mathcal{L}_{\text{train}} (\theta; z),\end{split}\]

where \(\mathcal{L}_{\text{train}}\) and \(\mathcal{L}_{\text{val}}\) denote the training and validation loss function, respectively and \(z = [z_1, z_2, ..., z_K]^T\) is the architecture parameter vector. Solving this problem is challenging because of two reasons. Computing the optimal model parameters \(\theta^{*}|z\) for a given architecture parameter vector \(z\) means that we need to train a DNN until convergence. Depending on the network and dataset size, this might take hours to days. Furthermore, finding the optimal architecture parameter vector itself is a combinatorial optimization problem that is very complex to solve if the number of candidate functions increases (regardless of how much time it takes to find \(\theta^{*}|z\)). A good overview paper about NAS is [Elsken2018]. Please have a look API documentation DartsSearcher and ProxylessNasSearcher for further details on how to use the DARTS and PNAS algorithms of NNablaNAS, respectively.

Both DARTS and PNAS simplify the optimization problem to solve it. In the following sections, we give a summary of both algorithms and the assumptions they make. For details, we refer to the original publications
[liu2018] and [Cai2018].

Rather than solving the bi-level optimization problem given above, both DARTS and PNAS use a pin-pong optimization scheme. Instead of training a model until convergence to obtain \(\theta^{*}|z\) and then
updating  \(z\) they alternate between architecture and model parameter updates, i.e., they compute


\[\begin{split}z^{t+1} &= \underset{z}{\arg\min} \quad \mathcal{L}_{\text{val}} (\theta^t; z) \\
\theta^{t+1}|z^t &= \underset{\theta}{\arg\min} \; \mathcal{L}_{\text{train}} (\theta; z^t),\end{split}\]

what eliminates the bi-level optimization problem.
However, optimization of \(z\) is still a combinatorial problem.
DARTS and PNAS address this problem in two different ways.


DARTS

In the case of DARTS, we use a continuous relaxation of the optimization problem, i.e., we define


\[z = \mathrm{softmax}(\alpha),\]

where \(\alpha \in \mathbb{R}^{K}\) are real architecture parameters. Hence, the output of the search space


\[y = \sum_{k=1}^K [\mathrm{softmax}(\alpha)]_k f_k(x; \theta_k)\]

is differentiable with respect to \(\alpha\) and we can use gradient-based optimization. Note, if we would use a softmax function with a temperature term \(z = \mathrm{softmax}(\alpha, T)\) and would take the limit of \(T \rightarrow 0\), we would recover the original combinatorial optimization problem. However, a drawback of DARTS is, that all candidates \(f_k(\cdot)\) must be evaluated, which requires lots of calculations and memory.




Proxyless NAS (PNAS)

PNAS addresses this problem differently. Instead of solving the original combinatorial optimization problem, PNAS assumes that the architecture weights are stochastic and optimizes the expected accuracy, i.e.,


\[\begin{split}\alpha^{t+1} &= \underset{\alpha}{\arg\min} \quad E_{z \sim p(z;\alpha)} [\mathcal{L}_{\text{val}} (\theta^t; z)] \\
z &\sim \mathrm{Categorical}(z; \alpha).\end{split}\]

Because the sampling from a categorical distribution is not differentiable, PNAS uses reinforce updates, i.e., it estimates the gradient \(\partial_{\alpha} E_{z \sim p(z;\alpha)} [\mathcal{L}_{\text{val}} (\theta^t; z)]\), using the score-function estimator


\[\partial_{\alpha} E_{z \sim p(z;\alpha)} [\mathcal{L}_{\text{val}} (\theta^t; z)] = E_{z \sim p(t;\alpha)} [\mathcal{L}_{\text{val}} (\theta^t; z) \partial_{\alpha} \mathrm{ln}p(z;\alpha)].\]
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Estimating the Latency of DNN Architectures

Hardware aware NAS addresses the problem, how to fit the architecture of DNNs to specific target devices, such that they fulfill given performance requirements. This is, for example, important if we want to deploy DNN based algorithms to mobile devices. Naturally, we want to find DNN architectures that run fast and require only little memory. More specifically, we might be interested in DNNs that have


	a low latency.


	a small parameter memory footprint.


	a small activation memory footprint.


	a high throughput.


	a low power consumption.




To perform hardware aware NAS, we, therefore, need tools to estimate such performance measures on target devices. The module nnabla_nas.utils.estimator implements
such tools, i.e., it provides methods to
estimate the latency and the memory footprint of DNN architectures.


How to estimate the latency of DNN architectures

There are different ways how to estimate the latency of a DNN architecture on the device. Two naive ways how to do it are given in the figure below, namely


	network-based estimation


	layer-based estimation




[image: ../_images/measurement.png]
Here, z is a random vector which encodes the structure of the network.
A network-based latency estimator instantiates and measures the time it takes to calculate the output of the computational graph at once. We call the resulting latency the true latency. A layer-based estimator instantiates the computational graph and estimates the latency of each layer separately. The latency of the whole network is calculated as the sum of all the individual layer latencies. We call this the accumulated latency. Because the individual calculation of each layer causes some computational overhead, the layer-based latency estimate is not the same as the true latency. However, experiments show that the differences between the true and the accumulated latency estimates are small, meaning that both can be used for hardware aware NAS.

In the NNabla NAS framework, we only implement layer-based latency estimators. The reason for this is, that we want the estimators to run offline, i.e., before the architecture search. Depending on the target hardware, a latency measurement on a device can take considerable time. Therefore, latency measurements during architecture search are
not desirable. With network-based estimators, the number of networks to measure grows exponentially with the number of layers and the number of candidates per layer. However, with the layer-based approach, the growth is only linear.




How to use the estimators

The following example shows how to use an estimator. First, we instantiate the model we want to estimate the latency of. To this end, we borrow the implementation of the MobileNet from MobileNet V2. If the network is constructed from dynamic modules, the NNabla graph must be constructed once, such that each module knows its input shapes. We can then feed the model to the estimator to calculate the latency. Please note, the estimator always assumes a batch size of one. Further, the model will always be profiled with the input shapes that have been calculated when the last NNabla graph was created.

from nnabla_nas.contrib.mobilenet import TrainNet
from nnabla_nas.utils.estimator import LatencyEstimator
import nnabla as nn
from nnabla.ext_utils import get_extension_context

cuda_device_id = 0
ctx = get_extension_context('cudnn', device_id=cuda_device_id)
nn.set_default_context(ctx)

inp = nn.Variable((1,3,32,32))
net = TrainNet()
#create the nnabla graph once (this defines the input shapes of all modules)
out = net(inp)

est = LatencyEstimator()
latency = est.get_estimation(net)





Please note, if the candidate space contains zero modules, the estimate can deviate considerably
if the model is constructed from dynamic modules. To make this clearer, we continue the
code example from above.

inp = nn.Variable((1,3,128,128))
out2 = net(inp)
latency2 = est.get_estimation(net)





Because we constructed a second NNabla graph (out2) that has a much larger input, the input shapes of all modules in the network will be changed accordingly. Therefore, latency2 will be much larger than the previously measured latency. Profiling static graphs are similar.
The only difference is, that the input shapes of static modules cannot change after instantiation, meaning that we do not need to construct an NNabla graph before latency estimation.







          

      

      

    

  

    
      
          
            
  
Logging and visualization

NNablaNAS provides numerous tools to create visualizations and logging files based on the search space results. Most of these features are integrated into  TensorBoard [https://www.tensorflow.org/tensorboard]. Before going further, more details on TensorBoard can be found at https://www.tensorflow.org/tensorboard/.

Once TensorBoard is installed, we can write scalars, images, and graphs into a directory for visualization within the TensorBoard UI. To run TensorBoard, use the following command:

tensorboard --logdir=./log






Logging

All training curves during searching and retraining are logged for one experiment. Users can easily get access to these learning curves by running TensorBoard.

[image: ../_images/logging.png]
Fig. 1. An example of training and validation curves.




Architecture visualization

For some search space, we have provided functions to visualize the architecture learned during the searching procedure.

[image: ../_images/darts_normal.png]
Fig. 2. A normal cell learned by DARTS algorithm.




Graph visualization

One of the strongest features in NNablaNAS is its ability to visualize the whole computational graph. This is quite useful for debugging complex model architectures.

[image: ../_images/tensorboard.png]






          

      

      

    

  

    
      
          
            
  
Experiments

NNablaNAS has command line interface utility:

usage: main.py [-h] [--context CONTEXT] [--device-id DEVICE_ID]
            [--type-config TYPE_CONFIG] [--search]
            [--algorithm {DartsSearcher,ProxylessNasSearcher,Trainer}]
            [--config-file CONFIG_FILE] [--output-path OUTPUT_PATH]

optional arguments:
-h, --help            show this help message and exit
--context CONTEXT, -c CONTEXT
                        Extension module. 'cudnn' is highly recommended.
--device-id DEVICE_ID, -d DEVICE_ID
                        A list of device ids to use, e.g., 0,1,2. This is only valid if you
                        specify `-c cudnn`.
--type-config TYPE_CONFIG, -t TYPE_CONFIG
                        Type configuration.
--search, -s          Whether search algorithm is performed.
--algorithm {DartsSearcher,ProxylessNasSearcher,Trainer}, -a {DartsSearcher,ProxylessNasSearcher,Trainer}
                        Algorithm used to run
--config-file CONFIG_FILE, -f CONFIG_FILE
                        The configuration file used to run the experiment.
--output-path OUTPUT_PATH, -o OUTPUT_PATH
                        Path monitoring logs saved.





To run an experiment with NNablaNAS, one should create a configuration file (in json format). Example configurations
that run the DARTS and PNAS algorithms for classification tasks on various search spaces are given in the experiments folder.
The configuration files contain: 1) The definition of the dataset. 2) The training parameters. 3) The search space definition. 4) The parameters of the optimizers that are used
to update the architecture and model parameters of the DNN.
For each architecture search, you need to create two separate configuration files, one for the search phase and one for the retraining phase.
Below is an example configuration file for an architecture search on the CIFAR10 dataset, that uses the DARTS algorithm for NAS.

[image: _images/experiment_cfg.png]
You can start architecture search using DartsSearcher by the command below

python main.py --search \
       -f examples/classification/darts/cifar10_search.json  \
       -a DartsSearcher \
       -o log/classification/darts/cifar10/search





The retraining script can be used as

python main.py -f examples/classification/darts/cifar10_train.json \
       -a Trainer \
       -o log/classification/darts/cifar10/train





NNablaNAS also supports multi GPUs. More information can be found here [https://nnabla.readthedocs.io/en/latest/python/tutorial/multi_device_training.html]. Below is an example of searching an architecture with 4 GPUs.

mpirun -n 4 main.py -d 0,1,2,3 --search \
           -f examples/classification/darts/cifar10_search.json  \
           -a DartsSearcher \
           -o log/classification/darts/cifar10/search
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How to implement a new module?

NNablaNAS defines a set of Modules, which are roughly equivalent to neural network layers. A Module receives input Variables and computes output Variables. Modules also hold internal states such as Variables containing learnable parameters. A set of common layers are defined in NNablaNAS (please to nnabla_nas.module). Modules can also contain other Modules, allowing to nest them in a tree structure. One can assign the submodules as regular attributes. All the training weights of Module classes are implemented as Parameter objects. Whenever a Module is assigned as a member of another Module, the Parameters of the assignee object have also added the Parameters of the object which is being assigned to. This is often referred to as registering Parameters of a Module. If one tries to assign a Variable to a Module object, it will not show up in the get_parameters() unless it has been defined as Parameter object.

A new Module should inherit from nnabla_nas.module.Module and override the call() method. Below is an example of Module.

import nnabla as nn
from nnabla_nas import module as Mo


class Net(Mo.Module):

    def __init__(self):
        self.fc = Mo.Linear(10, 5)
        self.coef = Mo.Parameter((5, 1))

    def call(self, input):
        return self.fc(input) * self.coef


x = nn.Variable((1, 10))
net = Net()

print(net)
print(net(x))





To register a list of Modules, we should use ModuleList. Similarly, a list of Parameters can be registered by wrapping the list inside a ParameterList class.

self.parameters = Mo.ParameterList([
    Mo.Parameter((1, 2)),
    Mo.Parameter((1, 2))
])

self.modules = Mo.ModuleList([
    Mo.Conv(3, 3, (3, 3)),
    Mo.Conv(3, 5, (3, 3))
])





A list of parameters inside Module can be retrieved by calling get_parameters(). In order to get all nested submodules, we can use get_modules().





          

      

      

    

  

    
      
          
            
  
Overview of Static Modules

Besides (dynamic) modules NNablaNAS offers static_modules, i.e.,
modules that can be used to define static computational graphs.
Although the dynamic network graph implementation has proven to
be a powerful tool for many deep learning applications,
it lacks some features that are needed for
hardware aware neural architecture search.

With dynamic network graphs, the graph structure is completely defined
in the code, but not encoded in the data structure. Therefore, a dynamic graph
definition is not the natural choice if we need to define functions that
need knowledge about the graph structure. Consider the following code example
that defines a simple d layer CNN:

from nnabla_nas import module as Mo
import nnabla as nn

inp = nn.Variable((10, 3, 32, 32))

def net(x, d=10):
   c_inp = Mo.Conv(3, 64, (32,32))
   c_l = [Mo.Conv(64, 64, (32,32)) for i in range(d-1)]
   x = c_inp(x)

   for i in range(d-1):
      x = c_l[i](x)
   return x

out = net(inp)





The network consists of 3 convolutional layers, with a 3x3 kernel. Each layer
computes 64 feature maps. Following the dynamic graph paradigm,
the structure of the network is only defined in the code, i.e., it is only defined
by the sequence in which we apply the layers c_l. The modules themselves are agnostic to
the graph structure, i.e., they do not know which module is their parent is, or which
input and output shapes they should expect.

A dynamic graph definition is not the natural choice if we need to define functions that
need knowledge about the graph structure. In the case of hardware aware NAS, such functions are, for example, latency estimation is given the graph structure, the calculation of
graph similarities (Bayesian Optimization) or simple graph optimization algorithms (as discussed later).
NNablaNAS therefore also offers static_modules. Static modules are a simple extension of
dynamic modules and inherit all of their functionality. In comparison, static modules
store the graph structure and therefore can be used to define static network graphs.
The example network from the example above can, for example, be defined as:

from nnabla_nas.module import static_module as Smo
import nnabla as nn

def net(x, d=10):
   modules = [Smo.Input(nn.Variable((10, 3, 32, 32)))]
   for i in range(d):
      modules.append(Smo.Conv(parents=[modules[-1]], modules[-1].shape[1], 64, (32,32)))
   return modules[-1]

out = net()





In comparison to dynamic modules, each static module keeps a list of its parents. Therefore, the graph structure is stored within and can later be retrieved from the modules. Furthermore, static_modules introduce a sort of shape security, i.e., once a module is instantiated, the input and output shape of the module are fixed and cannot be changed anymore.


Why Static Modules for hardware aware NAS

There are multiple reasons, why static modules are interesting for hardware aware NAS. Here, we discuss two
particularly important ones.

Typically, hardware aware NAS involves the definition of large candidate spaces, i.e.,
large DNN architectures that contain all kinds of candidate layers that are
heavily interconnected. During architecture search we consecutively draw subnetworks
from the candidate space, meaning that some of the candidate layers are selected,
while others are dropped. For an efficient search, it is desirable to have simple
graph optimization algorithms in place, i.e., algorithms that optimize the computational
graph of the selected subnetworks before executing them.

Consider for example the following search space: 1) The network applies an input convolution (conv 1). 2) Two candidate
layers are applied to the output of conv 1, that are a zero operation and another convolution (conv 2). 3) The Join layer
randomly selects the output of one of the candidate layers and feeds it to conv 3. If Join selects Conv 2, we need to calculate
the output of Conv 1, Conv 2 and Conv 3. However, if Join selects Zero, only the output of Conv 3 must be calculated, because
selecting Zero, effectively cuts the computational graph, meaning that all layers that are the parent of Zero and that have
no shortcut connection to any following layer can be deleted from the computational graph. Static modules implement such graph optimization, meaning that they can speed up computations.

[image: ../_images/static_example_graph.png]
A second reason why a static graph definition is a natural choice for hardware aware NAS is related to latency modeling.
To perform hardware aware NAS, we need to estimate the latency of the subnetworks that have been
drawn from the candidate space in order to decide whether the network meets our latency requirements or not.
Typically, the latency of all layers (modules) within the search space are measured once individually. The latency of a
subnetwork of the search space, then, is a function of those individual latencies and of the structure of the subnetwork. Note,
simply summing up all the latencies of the modules that are contained in the subnetwork is wrong. This is obvious if we reconsider the
example from above. All the modules Conv 1 to Conv 3 have a latency > 0, while Zero and Join have a latency of 0. If Join selects Zero,
Conv 1, Zero, Join and Conv 3 are part of the subnetwork. However, summing up the latency of Conv 1,
Zero, Join and Conv 3 are wrong. The correct latency would be if we only consider Conv 3.

Other problems which need knowledge of the graph structure are for example:
1) Graph similarity calculation
2) NAS, using Bayesian optimization algorithms
3) Modeling the memory footprint of DNNs (activation memory)




Which modules are currently implemented?

There is a static version of all dynamic modules implemented in nnabla_nas.modules. There are currently two static search spaces,
namely contrib.zoph and the contrib.random_wired.




Implementing new static modules

There are different ways of how to define static modules.


	You can derive a static version from a dynamic module. Consider the following




example, where we want to derive a static Conv module from the dynamic Conv module.
First, we derive our StaticConv module from A) The dynamic Conv class, B) The StaticModule base class.
We call the __init__() of both parent classes. Please note, that the order of inheritance is important.

import nnabla_nas.module.static_module as smo
import nnabla_nas.module as mo

class StaticConv(mo.Conv, smo.Module):
    def __init__(self, parents, name='', eval_prob=None, *args, **kwargs):
        mo.Conv.__init__(self, *args, **kwargs)
        Module.__init__(self, parents, name=name,  eval_prob=eval_prob)
        if len(self._parents) > 1:
            raise RuntimeError






	We can also implement a new static module from scratch, implementing the call method. Please follow the same steps that are documented in the dynamic module tutorial. In the following example, we define a StaticConv, implementing




the call method. You can either use the NNabla API or dynamic modules to define the transfer function. In our case, we use dynamic modules.

import nnabla_nas.module.static_module as smo
import nnabla_nas.module as mo

class StaticConv(smo.Module):
    def __init__(self, parents, name='', eval_prob=None, *args, **kwargs):
        Module.__init__(self, parents, name=name,  eval_prob=eval_prob)
        conv =  mo.Conv(*args, **kwargs

        if len(self._parents) > 1:
            raise RuntimeError

    def call(self, *inputs):
        return conv(inputs[0])








Implementing static graphs

We can build complex graphs from static modules. A static graph is the static version of a module list, i.e.,
it can store multiple static modules. Please have a look at the previous tutorial for details.

In the following example, we construct a graph that performs a separable convolution,
followed by a batch-normalization and a ReLU activation.
To create this graph, you only need to instantiate a depthwise convolution, a pointwise convolution,
a batch normalization and a ReLU static module and append it to the graph.

from nnabla_nas.module import static as smo

class SepConvBN(smo.Graph):
def __init__(self, parents, out_channels,
             kernel,
             name='', eval_prob=None):
    smo.Graph.__init__(self,
                       parents=parents,
                       name=name,
                       eval_prob=eval_prob)
    self._out_channels = out_channels

    self.append(SepConv(parents=parents,
                        name='{}/SepConv_1'.format(self.name),
                        in_channels=parents[0].shape[1],
                        out_channels=out_channels,
                        kernel=kernel,
                        with_bias=False,
                        eval_prob=eval_prob))

    self.append(SepConv(parents=[self[-1]],
                        name='{}/SepConv_2'.format(self.name),
                        in_channels=out_channels,
                        out_channels=out_channels,
                        kernel=kernel,
                        with_bias=False,
                        eval_prob=eval_prob))

    self.append(smo.BatchNormalization(parents=[self[-1]],
                                       n_features=self._out_channels,
                                       name='{}/bn'.format(self.name),
                                       n_dims=4))
    self.append(smo.ReLU(parents=[self[-1]],
                         name='{}/relu'.format(self.name)))





Of course, we can use this separable convolution as a building block in another static network graph.

from nnabla_nas.module import static as smo
import nnabla as nn

inp = smo.Input(value=nn.Variable((10, 3, 32, 32)))
c1 = SepConvBN(parents=[inp], out_channels=64, kernel=(3,3))
c2 = SepConvBN(parents=[c1], out_channels=64, kernel=(3,3))
nn_out = c2()








Defining a search space with random connections

TODO







          

      

      

    

  

    
      
          
            
  
How to construct a search space?

In this tutorial, we will show how to define a search space. Basically, a search space is
a huge DNN model that contains many different candidate layers, which can be selected
or dropped from the network by adjusting the architecture parameters. In NNablaNAS,
a search space therefore is defined as a Model class,
inherits the API from the class nnabla_nas.contrib.model.Model.

The base API of the Model class has four methods,
get_arch_parameters(), get_net_parameters(), loss() and
metrics(), that return the architecture parameters and model parameters, a loss value and
evaluation metrics for a model, respectively. The following example shows how
you can define a simple search space that contains three different layers, namely
a convolutional, a maximum pooling and an identity layer, that can be selected by the
architecture search algorithm. The candidate layers are followed by a global average pooling
and a linear classification layer.

from collections import OrderedDict

from nnabla_nas import module as Mo
from nnabla_nas.contrib.model import Model
import nnabla.functions as F

class MyModel(Model):
    def __init__(self):
        self._block = Mo.MixedOp(
            operators=[
                Mo.Conv(in_channels=3, out_channels=3, kernel=(3, 3), pad=(1, 1)),
                Mo.MaxPool(kernel=(3, 3), stride=(1, 1), pad=(1, 1)),
                Mo.Identity()
            ],
            mode='full'
        )
        self._classifier = Mo.Sequential(
            Mo.ReLU(),
            Mo.GlobalAvgPool(),
            Mo.Linear(3, 10)
        )

    def call(self, input):
        out = self._block(input)
        out = self._classifier(out)
        return out

    def get_arch_parameters(self, grad_only=False):
        r"""Returns an `OrderedDict` containing architecture parameters."""
        p = self.get_parameters(grad_only)
        return OrderedDict([(k, v) for k, v in p.items() if 'alpha' in k])

    def get_net_parameters(self, grad_only=False):
        r"""Returns an `OrderedDict` containing model parameters."""
        p = self.get_parameters(grad_only)
        return OrderedDict([(k, v) for k, v in p.items() if 'alpha' not in k])

    def loss(self, outputs, targets, loss_weights=None, *args):
        assert len(outputs) == 1 and len(targets) == 1
        return F.mean(F.softmax_cross_entropy(outputs[0], targets[0]))

    def metrics(self, outputs, targets):
        assert len(targets) == 1
        return {"error": F.mean(F.top_n_error(outputs[0], targets[0]))}

if __name__ == '__main__':
    net = MyModel()
    print(net)









          

      

      

    

  

    
      
          
            
  
How to implement a new search algorithm?

A Searcher interacts with the search space through a simple API. A searcher samples a model from the search space by assigning values to the architecture parameters. The results from sampled architecture are then used to update the architecture parameters of the search space. A searcher also updates the model parameters. A new Searcher should inherit API from nnabla_nas.runner.searcher.search.Searcher. This class has two methods train_on_batch() and valid_on_batch() which should be redefined by users. For further modification, we also provide two methods callback_on_start() and callback_on_finish(), which will be called at the beginning and at the end of the training, respectively.

from nnabla_nas.runner.searcher.search import Searcher

class MyAlgorithm(Searcher):

    def callback_on_start(self):
        # TODO: write your code here

    def train_on_batch(self, key='train'):
        # TODO: write your code here

    def valid_on_batch(self):
        # TODO: write your code here

    def callback_on_finish(self):
        # TODO: write your code here





There are two searcher algorithms implemented in NNablaNAS, including DartsSearcher and ProxylessNasSearcher.





          

      

      

    

  

    
      
          
            
  
Logging and Visualization

SummaryWriter is the main class to log data for visualization by TensorBoard. Training curves can be logged for each experiment. See the following example:

from nnabla_nas.utils.tensorboard import SummaryWriter
import numpy as np

writer = SummaryWriter('log')

for n_iter in range(100):
    writer.add_scalar('Loss/train', np.random.random(), n_iter)
    writer.add_scalar('Loss/test', np.random.random(), n_iter)

writer.close()





Expected output:

[image: ../_images/tutorial_logging.png]
We can also inspect the model using TensorBoard.

import nnabla as nn
from nnabla_nas.contrib.darts import SearchNet
from nnabla_nas.utils.tensorboard import SummaryWriter

writer = SummaryWriter('log')

# define the model
net = SearchNet(3, 16, 3, 10)
x = nn.Variable([1, 3, 32, 32])

writer.add_graph(net, x)
writer.close()





Expected output:

[image: ../_images/tensorboard1.png]
Please refer to the APIs SummaryWriter for more information.





          

      

      

    

  

    
      
          
            
  
NNablaNAS examples


	NNablaNAS contains several examples including:

	
	DARTS search space and search algorithm [liu2018darts]


	Proxyless NAS (PNAS) [cai2018proxylessnas] algorithm with mobilenet search space


	Zoph [zoph2016neural] search space (can be searched with DARTS or PNAS algorithms)


	Randomly wired neural network [xie2019exploring]








The examples can be launched from a unique entry point ./main.py and all the configurations for each of the experiment is predefined in a json file. The list of command lines to run the prepared examples can be found in ./examples/jobs.sh.

In this tutorial we will see how to run the examples and how you can modify the configurations to run your experiments.

We will show how to run and modify the so-called MobileNet example on CIFAR10. After running the example we advise to try the other examples on your own.


Note

The command line for each example can be found in ./jobs.sh




The MobileNet search space

In this example we use MobileNetV2 [sandler2018mobilenetv2] as a backbone to build the search space. In [sandler2018mobilenetv2], the proposed architecture use fixed inverted bottleneck convolution with an expansion factor of 6 and a kernel size of 3x3. Furthermore, the number of inverted bottleneck convolution for each block with the same feature map size is defined. In this example, we want to add flexibility in the MobileNetV2 architecture to choose the depth for each block as well as the expansion factor and the kernel size for each inverted residual convolution.

We use the PNAS search algorithm to find a good architecture in this search space. Specifically, the algorithm can choose, for each layer, between different inverted residual convolution settings or to skip the layer (using identity module). Note that a similar experiment was performed in the original PNAS paper [cai2018proxylessnas]

Using NNablaNAS, we can find better architectures than the reference MobileNetV2 both for CIFAR10 and for ImageNet.




Running your first example


Note

Before starting you should get the NNablaNAS framework and install the dependencies. Please refer to the Installation part of this documentation.



First, we will run the search with the default setting:

python main.py --search \
         -f examples/classification/mobilenet/cifar10_search.json \
         -a ProxylessNasSearcher \
         -o log/classification/mobilenet/cifar10/search






	We used the following arguments:

	
	main.py is the entry script for all search and training examples.


	-f examples/mobilenet_cifar10_search.json points to a json file describing the experiment configuration (we will look into the configuration later in this tutorial).


	-a ProxylessNasSearcher to use the PNAS algorithm.


	-o log/classification/mobilenet/cifar10/search gives the output path to save the logs, models, etc.








Note that the device number and the algorithm could be set directly in the json file. If defined in the json file, you can omit it in the command line.

The command runs the search using the PNAS algorithm, it will take several hours (around 12 hours depending on the GPU) to run. While it is running, let’s have a look at the output path.


	In ./log/classification/mobilenet/cifar10/search you will find the following files:

	
	arch.h5 it contains the best architecture so far.


	arch.png to visualize the best architecture so far.


	config.json is the configuration used for this experiment.


	log.txt contains the search log








Here is an example of a MobileNet architecture:

[image: ../_images/arch.png]
You can also monitor the search using the TensorBoard. To run the TensorBoard, use the following command:

tensorboard --logdir=./log





Access your TensorBoard page using your browser at the given address (typically: <http://localhost:6006/>)


Note

More details on TensorBoard can be found at https://www.tensorflow.org/tensorboard/.



Once the search is finished, retrain the winning architecture from scratch using the same entry point python script:

python main.py -f examples/classification/mobilenet/cifar10_train.json \
            -a Trainer \
            -o log/classification/mobilenet/cifar10/train





Note that, this time, we use the Trainer algorithm. The retraining will take several hours. You can monitor the training from your TensorBoard.

If you want to compare with the original implementation of MobileNetV2, just run:

python main.py -f examples/classification/mobilenet/cifar10_train_latency.json \
             -a Trainer \
             -o log/classification/mobilenet/cifar10/constrained/train





Congratulations, you have performed your first neural architecture search using NNablaNAS. Now let’s have a look at how to customize the search and training configuration.




Search Configuration

Without writing any python code, you can flexibly change the search configuration. Let’s go through examples\classification\mobilenet\cifar10_search.json:

"dataloader": {
    "cifar10": {
        "train_portion": 0.9
    }
},





These describe the define the dataset to be used; here it is CIFAR10.
During the search, the training data is split into two parts. One part is used to train the model parameters and the other part is used to update the architecture parameters. train_portion sets the portion of the training sample that is used to train the parameters.

Now let’s have a look at the search space configuration:

"network": {
     "mobilenet": {
         "num_classes": 10,
         "settings": [
             [24, 4, 1],
             [32, 4, 1],
             [64, 4, 2],
             [96, 4, 1],
             [160, 4, 2],
             [320, 1, 1]
         ],
         "mode": "sample"
     }
 },





mobilenet is the name of the search space to be used. NNablaNAS contains several search spaces including darts, zoph and mobilenet. You can also prepare your own search space. Here we choose mobilenet and the following configurations are the arguments specific to this search space. num_classes is the number of the output of the classification network. settings defines the architecture backbone. Each line is a block of inverted residual convolutions with different feature sizes. The first column defines the number of feature maps for each block. The second column defines the maximum number of inverted residual convolutions for each block. The third column defines the stride used in the first inverted residual convolution of the block (this has the effect of reducing the feature map size).

mode should be set to sample for PNAS algorithm.

In addition, the MobileNet search space has two important arguments call  candidates and skip_connect, they define the choices for each inverted residual convolution. The example uses the default setting so they don’t need to be explicitly set. The default setting is:

 "candidates" = [
        "MB3 3x3",
        "MB6 3x3",
        "MB3 5x5",
        "MB6 5x5",
        "MB3 7x7",
        "MB6 7x7"
    ],
"skip_connect": true





skip_connect defines if the inverted residual convolutions can be skipped giving the possibility to learn the depth of the network.

candidates defines the possible inverted residual convolution settings. The number after MB corresponds to the expansion factor and the kxk corresponds to the kernel size.

Next, it is possible to set the optimizer arguments for the parameter training:

"optimizer": {
    "train": {
        "grad_clip": 5.0,
        "weight_decay": 4e-5,
        "lr_scheduler": "CosineScheduler",
        "name": "Momentum",
        "lr": 0.1
    },
    "valid": {
        "grad_clip": 5.0,
        "name": "Adam",
        "alpha": 0.001,
        "beta1": 0.5,
        "beta2": 0.999
    },
    "warmup": {
        "grad_clip": 5.0,
        "weight_decay": 4e-5,
        "lr_scheduler": "CosineScheduler",
        "name": "Momentum",
        "lr": 0.1
    }
},





Here we set three optimizers for warmup, training, validation. In PNAS The train and valid optimizers will train the models parameters and the architecture parameters respectively. Before starting updating the architecture, it is beneficial to warm up the model parameters.

If grad_clip is specified, the gradients are clipped at the specified value.

If weight_decay is specified, weight decay will be used.

Finally, we set the general hyper-parameters for the search:

"hparams": {
    "epoch": 200,
    "input_shapes": [
        [3, 32, 32]
    ],
    "target_shapes": [
        [1]
    ],
    "batch_size_train": 128,
    "batch_size_valid": 256,
    "mini_batch_train": 128,
    "mini_batch_valid": 256,
    "warmup": 100,
    "print_frequency": 25
}





}

epoch, input_shape and target_shapes are self-explanatory.

batch_size_train is the batch size used for training and mini_batch_train specifies the number of examples transfer into the GPU at one time. The gradients of the mini_batch_train are accumulated before updating the model. Keep mini_batch_train to the same value of batch_size_train if you have enough GPU memory but it is useful to set a lower mini_batch_train so that the mini-batch can fit in GPU memory while still doing the update on a larger batch. batch_size_valid and mini_batch_valid set the corresponding batch size and mini-batch size for the validation.

The number of warmup epoch is defined with the warmup argument.

print_frequency sets how often the partial results are printed in the log file.




Train Configuration

Let’s have a look at the MobileNet example examples/classification/mobilenet/cifar10_train.json. Most of the configuration parameters are the same as for the search json file.
The only new configuration parameter is:

"genotype": "log/classification/mobilenet/cifar10/search/arch.h5"





genotype is used to provide the path to the previously learn architecture (.h5 file).
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